On the Embeddability of Random Walk Distances
نویسندگان
چکیده
Analysis of large graphs is critical to the ongoing growth of search engines and social networks. One class of queries centers around node affinity, often quantified by random-walk distances between node pairs, including hitting time, commute time, and personalized PageRank (PPR). Despite the potential of these “metrics,” they are rarely, if ever, used in practice, largely due to extremely high computational costs. In this paper, we investigate methods to scalably and efficiently compute random-walk distances, by “embedding” graphs and distances into points and distances in geometric coordinate spaces. We show that while existing graph coordinate systems (GCS) can accurately estimate shortest path distances, they produce significant errors when embedding random-walk distances. Based on our observations, we propose a new graph embedding system that explicitly accounts for per-node graph properties that affect random walk. Extensive experiments on a range of graphs show that our new approach can accurately estimate both symmetric and asymmetric random-walk distances. Once a graph is embedded, our system can answer queries between any two nodes in 8 microseconds, orders of magnitude faster than existing methods. Finally, we show that our system produces estimates that can replace ground truth in applications with minimal impact on application output.
منابع مشابه
A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملA survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer
Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...
متن کاملA survey on random walk-based stochastic modeling in eukaryotic cell migration with emphasis on its application in cancer
Impairments in cell migration processes may cause various diseases, among which cancer cell metastasis, tumor angiogenesis, and the disability of immune cells to infiltrate into tumors are prominent ones. Mathematical modeling has been widely used to analyze the cell migration process. Cell migration is a complicated process and requires statistical methods such as random walk for proper analys...
متن کاملA Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 6 شماره
صفحات -
تاریخ انتشار 2013